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Abstract. Over the last few years, high-quality X-ray imaging and spectroscopic
data from Chandra and XMM-Newton have added greatly to the understanding of
the physics of radio jets. Here we describe the current state of knowledge with an
emphasis on the underlying physics used to interpret multiwavelength data in terms
of physical parameters.

1 Introduction

Jets in active galaxies emit over a wide range of energies from the radio to the
γ-ray. Synchrotron radiation and inverse-Compton scattering are the two main
radiation processes, with their relative importance depending on observing
frequency and location within the jet. The thermally-emitting medium into
which the jets propagate plays a major role in the properties of the flow and
the appearance of the jets.

In this chapter, we concentrate primarily on the interpretation of obser-
vations of resolved jet emission. Much new information about jets has been
gained over the past few years. The high spatial resolution of Chandra has
been key to the study of X-ray jets, and the large throughput of XMM-Newton
has assisted studies of the X-ray-emitting environments. While historically the
search for optical jet emission has been carried out using ground-based tele-
scopes, a major problem has often been one of low contrast with light from
the host galaxy. The sharp focus of the Hubble Space Telescope (HST) helps
to overcome this difficulty, and the HST is playing a particularly important
role in optical polarization studies. The recent opening of the Very Large
Array (VLA) data archive has greatly assisted multiwavelength studies of ra-
dio jets. It, together with the Australian Telescope Compact Array (ATCA)
in the southern hemisphere, allows multifrequency radio mapping at angular
resolutions well matched to Chandra and XMM-Newton. The combination of
data from the radio to the X-ray has been a key element in advancing our
understanding of jets.
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Active-galaxy jets provide an exciting laboratory where the interplay of
relativistic effects, plasma physics, and radiation mechanisms can be seen. Our
purpose in this chapter is to provide an introduction to the field and some
pointers to recent research.

2 Radiative processes

The non-thermal mechanisms of synchrotron radiation and inverse Compton
scattering are described extensively in several places, e.g., [14, 49, 81, 96, 111],
and descriptions of thermal radiation can be found, e.g., in [81, 111, 114, 123].
In the following sections we give equations important in the interpretation of
jet emission in useful forms that are normally independent of the system of
units.

2.1 Synchrotron radiation

The rate of loss of energy of an electron (or positron) of energy E is given by

− dE/dt = 2σTcγ
2β2uB sin2 α (1)

where σT is the Thomson cross section, c is the speed of light, γ is the Lorentz
factor of the electron (= E/mec

2), β is the speed of the electron in units of c,
uB is the energy density in the magnetic field, and α is the pitch angle between
the direction of motion and the magnetic field. Averaging over isotropic pitch
angles, P (α)dα = (1/2) sinα dα,

− dE/dt = (4/3)σTcγ
2β2uB (2)

The radiative lifetime of the electrons is usually calculated as

τrad = E/(−dE/dt) (3)

which, for energy losses proportional to energy squared, as here, is the time for
any given electron to lose half of its energy. High-energy electrons, responsible
for high-energy radiation, lose their energy fastest.

The spectral distribution function of synchrotron radiation emitted by
monoenergetic electrons of Lorentz factor γ is rather broad. It is usual to
define the critical frequency,

νc = (3/2)γ2νg sinα (4)

where νg is the non-relativistic electron gyrofrequency, which is proportional
to the magnetic field strength, B. Written in SI units, νg = eB/2πme ≈
30B GHz, where B is in units of Tesla. As a rough approximation, something
close to νc can be used as the frequency of emission, but for the full distribution
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Fig. 1. The spectral distribution function of synchrotron radiation from a monoen-
ergetic electron of Lorentz factor γ, where νc is defined in (4). The spectrum is
plotted linearly on the left and logarithmically on the right

function it is convenient to defineX = ν/νc, and then the spectral distribution
function depends on frequency through

F (ν, νc) = X

∫ ∞

X

K5/3(ζ)dζ (5)

where K5/3 is the modified Bessel function of order 5/3. The spectrum peaks
at 0.29νc, as shown in Fig. 1. The synchrotron spectrum from a distribu-
tion of electrons with some maximum Lorentz factor, γmax, will therefore fall
exponentially at high frequencies. The gradual turn-down at low frequencies,
∝ ν1/3, is not expected to be seen in practice. Instead, for a homogeneous emit-
ting region the low-energy fall off will have a slope ∝ ν2.5 due to the source
having become optically thick and suffering from synchrotron self-absorption.

The luminosity per unit frequency for a number spectrum of electrons
N(γ)dγ is

Lν = 2π
√

3 cme re νg sinα

∫

F (ν, νc)N(γ)dγ (6)

where re is the classical electron radius, and this form is valid in all systems of
units. For a power-law number distribution of electronsN(γ) dγ = κγ−p dγ, an
analytical result can be found for frequencies satisfying γ2

minνg ≪ ν ≪ γ2
maxνg

Lν = κν−(p−1)/2ν(p+1)/2
g sinα(p+1)/2me c re

3p/2

p+ 1
Γ

(

p

4
+

19

12

)

Γ

(

p

4
− 1

12

)

(7)
where Γ is the gamma function, and, again this form is valid in all systems
of units. If the pitch angle distribution is isotropic, the term in sinα may be
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Fig. 2. The spectral distribution function of inverse Compton radiation from a mo-
noenergetic electron of Lorentz factor γ in an isotropic radiation field of frequency
νo in the Thomson limit (8). The spectrum is plotted linearly on the left and loga-
rithmically on the right

replaced by
√
πΓ [(p + 5)/4]/2Γ [(p+ 7)/4]. The result for more complicated

electron spectra must be computed numerically using (6).
It is usual to use the symbol α for the negative exponent of the power-law

radiation spectrum (Lν ∝ ν−α), where α = (p−1)/2. Particle acceleration by
ultra-relativistic shocks, likely to be important in jets, produces p ≈ 2.2− 2.3
[1], and p will be steeper in regions where energy losses are important.

2.2 Inverse Compton scattering

Relativistic electrons lose energy by scattering photons to higher energy in
a process analogous to synchrotron radiation, where virtual photons are re-
placed with real ones. Providing an electron of mass me and Lorentz factor γ
is scattering a photon of low enough energy such that

γhνo ≪ mec
2 (8)

the Thomson cross section, σT is applicable, and the rate of loss of energy of
the electron in an isotropic radiation field of total energy density urad is

− dE/dt = (4/3)σTcγ
2β2urad (9)

where other symbols are as defined in Sect. 2.1. The radiative lifetime can be
calculated using (3). Where electrons are losing energy both by synchrotron
and inverse Compton emission, the ratio of total luminosity in the two emis-
sions is simply LiC/Lsyn = urad/uB.

An exact result [14] exists for the spectral distribution function for a
monoenergetic electron of Lorentz factor γ scattering an isotropic radiation
field of photons of frequency νo up to frequency ν. It is convenient to define
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Fig. 3. The combinations of electron Lorentz factors and photon frequencies which
will produce photons of typical optical, X-ray and γ-ray energies via inverse Compton
scattering of an isotropic photon distribution in the Thomson limit is shown on the
left. The Thomson limit only holds if γhνo/mec

2 ≪ 1. The right-hand plot shows
this is satisfied for optical and X-ray photons, but for γ-ray and higher energies the
Klein-Nishina cross-section begins to become important

X = ν/4γ2νo, where (1/4γ2) ≤ X ≤ 1, and then the spectral distribution
function is proportional to

F (ν, νo, γ) = Xf(X) = X(1 +X − 2X2 + 2X lnX) (10)

This is plotted in Fig. 2. The luminosity per unit frequency for a number spec-
trum of electrons N(γ)dγ and a spectral number per unit volume of photons
n(νo)dνo is

Lν = 3h c σT

∫ ∫

n(νo)N(γ)F (ν, νo, γ) dνo dγ (11)

The relationship between the electron power-law index, p, and the spectral in-
dex of inverse Compton radiation, α, is the same as for synchrotron radiation.
Since the mean value of X,

∫

Xf(X)dX/

∫

f(X)dX = 1/3 (12)

the mean frequency of photons scattered in an isotropic radiation field is given
by

ν = (4/3)γ2νo (13)

Fig. 3 plots combinations of γ and νo that will produce optical, X-ray,
and γ-ray photons according to (13), and shows that in most situations (8)
is applicable. As (8) becomes violated, the Klein-Nishina cross section must
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be used in place of σT, as in these situations the electron begins to lose a
significant fraction of its energy in a single scattering, e.g., [14].

The photon fields available to the electrons in jets are the synchrotron
radiation they have produced, in which case the emission is known as syn-
chrotron self-Compton (SSC) radiation, the cosmic microwave background
(CMB) which scales with redshift as (1 + z)4, and photons from the active-
galaxy nucleus. In practice the photon fields are rarely expected to be isotropic
when the effects of the geometry and bulk speed of the jet plasma are taken
into account.

2.3 Thermal radiation and energy loss

For hot X-ray emitting gas containing ions of charge Zi, and where the cooling
in line radiation is unimportant, the X-ray emissivity, Eν depends on temper-
ature, T , and electron and ion number densities, ne, ni, as

Eν =
32π

3

(

2π

3

)1/2

Z2
i gff ni neme c

2 r3e

(

mec
2

kT

)1/2

e−hν/kT (14)

for all systems of units, where re is the classical electron radius. gff(ν, T, Z),
the free-free Gaunt factor which accounts for quantum-mechanical effects, is
of order unity and a weak function of frequency. An approximate form [111]
in the case of most X-ray interest, (kT/eV) > 13.6Z2

i and Zi ≤ 2, is

gff =

{

(

3
π

kT
hν

)1/2
hν > kT

√
3

π ln
(

4
ζ

kT
hν

)

hν < kT
(15)

where the constant ζ = 1.781. For heavier ions more complicated forms must
be used, and since the heavier ions contribute disproportionately to the X-ray
output (because of the Z2

i factor), the calculation of the correct Gaunt factor
becomes a computational issue.

In SI units, (14) becomes

Eν = 6.8×10−51Z2
i T

−1/2(ne/m
−3) (ni/m

−3) gff e
−hν/kT W m−3 Hz−1 (16)

At temperatures below ∼ 2 keV, line radiation cannot be ignored, and
the plasma models incorporated into X-ray spectral-fitting programs such as
XSPEC [4] can be used to find Eν . Examples for plasma of kT = 0.5 keV and
5.0 keV are shown in Fig. 4. It is common to define the rate of loss of energy
per unit volume per unit frequency per npne as Λ(ν), where np is the proton
number density. In XSPEC, Λ(ν) is normalized by (1 + z)2

∫

npnedV/4πD
2
L in

fitting to data, where V is volume and DL is luminosity distance. This allows
np to be determined assuming some geometry for the source, as illustrated in
Sect. 4.

The total energy-loss rate per unit mass is given by
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Fig. 4. Emissivity distributions of gas of kT = 0.5 keV (left) and kT = 5 keV (right)
with normal cosmic abundances from the APEC model in XSPEC. The line emission,
superimposed on the thermal bremsstrahlung continuum, is a more prominent chan-
nel for cooling in cool gas. The resolution of these model spectra is higher than that
of current X-ray detectors

ǫ =
X
∫

Eνdν

mHnp
(17)

where X is the mass fraction in hydrogen, which is 0.74 for normal cosmic
(i.e., solar) abundances.

If the energy loss is sufficiently rapid, the radiating gas will fall towards
the centre of the gravitational potential well as its pressure support fails. The
rate of infall is therefore determined by whether the characteristic timescale
for radiative energy loss is greater than or less than the timescale for energy
input, perhaps from the dissipation of energy by the radio jet.

If the timescale for energy loss is defined by the logarithmic rate of change
of temperature in the comoving fluid frame,

τcool = −
(

D lnT

Dt

)−1

(18)

where D/Dt is the convective derivative (∂/∂t+ v · ∇), which describes the
rate of change in a frame moving at velocity v with the gas, then the value of
τcool can be obtained from the entropy equation

Ds

Dt
= − ǫ

T
(19)
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Fig. 5. Curves of τcoolnp (with np in units of 103 m−3 or 10−3 cm−3) as a function
of kT for three metal abundances with respect to solar: 0.1, 0.5, 1.0

where s(T, P ) is the entropy per unit mass of the gas and P is the pressure.
For isobaric (P = constant) losses in a monatomic gas,

τcool =
5

2

kT

ǫ µmH
(20)

Curves of τcoolnp as a function of kT , calculated using the APEC plasma
model in XSPEC, are shown in Fig. 5. At high temperatures, τcool ∝ T 1/2, but
at T ≤ 2 keV line emission from common metal species in the gas becomes im-
portant, and so ǫ and τcool become strong functions of kT . The offset between
the curves at large kT arises from the increased density of highly-charged ions
in the radiating plasma as the metal abundance increases.

3 Effects of bulk relativistic motion

The first evidence for bulk relativistic motion in jets was on pc scales. In
the early 1970s, the technique of Very Long Baseline Interferometry (VLBI)
became established, and the first detections of apparent superluminal mo-
tion of small-scale radio components were being made (see [97] for a short
review). After some years of debate, it became widely accepted that the true
explanation of the effect was as proposed earlier, [107], and that the appar-
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ently superluminal velocities resulted from components moving towards the
observer at bulk relativistic speeds.

From a consideration of light travel time, it is straightforward to show
that a source moving with a relativistic speed βc, bulk Lorentz factor Γ (=

1/
√

1 − β2), at angle θ towards the observer, has an apparent transverse ve-
locity of

vapp = βc sin θ/(1 − β cos θ) (21)

which takes on a maximum value of Γβc when sin θ = 1/Γ . Hence large β
(> 1/

√
2) and small θ can easily result in vapp > c.

The bulk relativistic Doppler factor is defined as

δ = 1/Γ (1 − β cos θ) (22)

and takes on a large value for large β, small θ. For a spherical blob of emission,
the apparent spectral luminosity, Lν , is increased by δ3+α, where α is the spec-
tral index (Sect. 2.1), although in most steady jets δ2+α is more appropriate
[103, 116].

A variable source will show intensity changes on timescales shorter by δ
than the true value, and beaming effects can have a dramatic effect on model
parameters. For example, it was shown that the predicted X-ray flux density
from SSC in a compact, spherical, variable radio source must be reduced
by a factor of δ2(3α+5) if variability is used to measure the size, and the
observed self-absorption turn-over frequency is used to estimate the magnetic-
field strength [85, 86].

Relativistic beaming has a major effect on a jet’s appearance, and by the
1980s the first models to unify classes of active galaxies through jet orientation
were proposed, e.g., [94, 116], and subsequently further developed to account
for multiwavelength properties, e.g., [6, 115, 130]. It is common to assume
that a radio source has two oppositely-directed jets that are intrinsically the
same, although there is doubt that this need be the case either from jet-
production considerations or asymmetries in the environment through which
the jets propagate. Under the assumption of intrinsic similarity, the brightness
ratio between the approaching and receding jets is given by

RJ =

(

1 − β cos θ

1 + β cos θ

)−(α+2)

(23)

This constraint on β and θ is often used in conjunction with a constraint
on vapp to estimate separately the jet speed and the angle to the line of sight,
e.g., [68, 147]. The core dominance, Rcd, defined as the flux density of beamed
emission divided by that of unbeamed extended emission, is also commonly
used as an indicator of the angle of a source to the line of sight. When applied
to a twin-jet source, e.g., [94],
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Rcd =
Rcd(cos θ=0)

2

[

(1 − β cos θ)−(α+2) + (1 + β cos θ)−(α−2)
]

(24)

Bulk relativistic motion towards the observer has an important effect on
inverse-Compton scattering in the case of an external photon field (i.e., not
SSC) [34]. In its rest frame an electron now sees a directionally enhanced
radiation field and the rate of scatterings increases. If the photon field is
isotropic in the observer’s frame (such as the CMB), the increase in scattering
rate is by a factor of δ. Since lower-energy electrons (of which there are more)
are needed to scatter photons of a given rest-frame frequency to the observed
frequency, there is a further enhancement by δα. This means that the observed
luminosity at a given frequency from inverse-Compton scattering of the CMB
will be increased relative to the synchrotron luminosity by δ1+α, assuming
that the magnetic field and electron spectrum are held constant. Although
this in itself is not a large factor compared with ∼ δ2+α (see above) that
arises from any radiation mechanism and applies both to the synchrotron
and inverse-Compton emission, it can be sufficient to raise the ratio of X-ray
to radio emission enough to fit observations of quasar jets (Sect. 6.3). For a
source radiating at minimum energy (Sect. 6.1), while the X-ray emission from
inverse-Compton scattering of CMB photons is increased, the X-ray emission
from SSC is reduced. To increase this ratio via the SSC mechanism requires
taking the source out of minimum energy through adding relativistic electrons.
A beamed source has intrinsically lower total energy content, and, despite the
higher jet speed increasing the kinetic energy, it may be in a condition of
minimum total (radiative and kinetic) power [47].

4 The external medium

Often the bulk of the X-ray emission from an active galaxy is not jet re-
lated, but rather arises from the hot interstellar, intergalactic, or intracluster
medium around the jet. If we assume that this gas is almost at rest in the
local gravitational potential well, with little transfer of energy or matter to or
from it, then it will be in a state close to hydrostatic equilibrium.

Under these circumstances, the gas will take up a density and temperature
profile which depend on the distribution of mass and the thermal history of
the gas. The principal governing equation is that of hydrostatic equilibrium,
with

∇P = −ρ∇Φ (25)

where Φ is the gravitational potential and ρ is the total mass density of the
gas. We may assume that the gas has the ideal gas equation of state

P =
ρ k T

µmH
=
np k T

X µ
(26)
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to relate P and ρ, where µ is the mass per particle in units of mH, given by

µ =

(

2X +
3

4
Y +

1

2
Z

)−1

= 0.60 (27)

for a gas with solar abundances (X = 0.74, Y = 0.25, Z = 0.01).
If the mass distribution is spherically symmetrical, then

dΦ

dr
=
GMtot(r)

r2
(28)

where Mtot(r) is the total mass within radius r, and so the mass density and
temperature profiles of the gas are related to the distribution of total mass by

GMtot(r) = − kTr

µmp

(

d ln ρ

d ln r
+
d lnT

d ln r

)

. (29)

A consistent solution of this equation is obtained by assuming that the gas
is isothermal and that the mass distribution follows

Mtot(r) = 2Mc
r3

rc (r2 + r2c )
(30)

where rc, the core radius, defines the characteristic scale of the mass distri-
bution and Mc is the mass within rc. The density of the gas then follows the
so-called isothermal β model [25]

ρ = ρ0

(

1 +
r2

r2c

)− 3
2β

(31)

where β is a constant which determines the shape of the gas distribution, and
depends on the ratio of a characteristic gravitational potential to the thermal
energy per unit mass in the gas

β =
2

3

µmH

kT

GMc

rc
. (32)

The alternative derivation of (31) given by [25] brings out the interpreta-
tion of β in terms of the relative scale heights or, equivalently, the ratio of
energy per unit mass in gas and dark matter. ρ0, rc, and β in (31) are of-
ten fitted to provide convenient measures of the gas distribution’s mass, scale
and shape without considering the detailed properties of the underlying mass
distribution (30).

It should be noted that the physical consistency of this much-used model
for the gas distribution depends on radial symmetry (a simple distortion into
an ellipsoidal model for the gas density ρ would imply a mass distribution
which is not necessarily positive everywhere), and on gas at different heights
in the atmosphere having come to the same temperature without having neces-
sarily followed the same thermal history. This is problematic given the various
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origins of gas — some will have fallen into the cluster, some will have been
ejected from stars, and some may have been moved by the jet. The solu-
tion (31) is not unique in the sense that gas with a different thermal history
might follow a significantly different density distribution. Thus, for example,
if the gas has the same specific entropy at all heights, and so is marginally
convectively unstable, with

P ∝ ργ (33)

with γ being the usual specific heat ratio (5/3 for a monatomic gas), the mass
distribution (30) would lead to a gas density distribution

ργ−1 = ργ−1
0

(

1 − βA ln

(

1 +
r2

r2c

))

(34)

where βA is a structure constant with a similar meaning to β, and the relation
only applies within the radius at which ρ→ 0.

A similar procedure for an NFW mass profile [92] and an isothermal gas
leads to a density distribution

ρ = ρs 2−α

(

1 +
r

rs

)αrs/r

(35)

where the new structure constant is

α =
1

ln 2 − 1
2

µmH

kT

GMs

rs
(36)

(rs is the scale of the NFW model and Ms is the mass within radius rs). It
can be seen that in this solution ρ → ∞ as r → 0, since the NFW density
profile has a cusp at r = 0.

The total masses for either the NFW profile or (30) diverge as r → ∞,
so both profiles must be truncated at some radius, such as r200, the radius
at which the mean enclosed mass density is 200× the critical density of the
Universe, ρcrit at redshift z. Care should be taken in using the solutions for
ρ to ensure that the fraction of mass in gas does not exceed the cosmological
bound (∼ 17%).

The run of density and temperature in the atmosphere around a jet are
measured from the X-ray image and spectrum, where a density model for the
gas of the form of (31) or (35) is fitted to the X-ray surface brightness. The
X-ray surface brightness at frequency ν at a point offset by r in projected

distance from the centre of a spherical gas distribution is (in energy per unit
time per unit solid angle per unit frequency)

Σν(r)dΩ = (1 + z)

∫

nenpΛν(T )dV

4πD2
L

(37)
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where Λν is the emissivity of the gas at frequency ν, and DL is the luminosity
distance of the gas. The (1+ z) factor takes account of the redshifting of time
and frequency in the definition of Σν . The volume element in the integral is

dV = dlD2
AdΩ (38)

where dl is an element of distance along the line of sight, DA is the angular
diameter distance, and dΩ is the element of solid angle, so that the surface
brightness becomes

Σν(r) =

∫

nenpΛν(T )dl

4π(1 + z)3
. (39)

For an isothermal gas with a β-model density distribution

Σν(r) =
Λν(T )ne0 np0

4 π (1 + z)3

∫
(

1 +
r2 + l2

r2c

)−3β

dl (40)

where the integral is taken along the line of sight with limits of ±∞ or to
some cut-off radius. In the former case the integral is simple, and the X-ray
surface brightness can be written [11]

Σν(r) =
Λν(T )ne0 np0 rc

4 π (1 + z)3

(

1 +
r2

r2c

)
1
2−3β √

π
Γ (3β − 1

2 )

Γ (3β)
(41)

It is also useful to write down the observed flux density, Sν , of a gas distribu-
tion out to angle θ from the centre, since this is the quantity generally fitted
in X-ray spectral analyses. This is

Sν(θ) =

∫ θ

0

2πθ dθΣν(r) (42)

=
Λν(T )ne0 np0 θ

3
cDA

(1 + z)3

√
π

4

Γ (3β − 3
2 )

Γ (3β)

(

1 −
(

1 +
θ2

θ2c

)
3
2−3β

)

(43)

where θc is the angular equivalent of the core radius rc. Now, XSPEC (Sect. 2.3)
calculates a normalization, N , for any thermal gas model, where

N =

∫

nenpdV

4πD2
A(1 + z)2

≡ (1 + z)Sν

Λν
(44)

and this is related to the parameters of the isothermal β model by

N =
ne0 np0 θ

3
cDL

(1 + z)4

√
π

4

Γ (3β − 3
2 )

Γ (3β)

(

1 −
(

1 +
θ2

θ2c

)

3
2−3β

)

(45)

The fitting process in XSPEC takes account of the form of Λν and the
conversion from energy units (Sν) to the count rate in energy bins used by
X-ray detectors.
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This expression shows how to use the normalization N found by XSPEC,
or some other code, from the X-ray spectrum within angular radius θ of the
centre, and β and rc as fitted from the radial profile of the X-ray emission, to
measure the central electron and proton densities which are related by

ne

np
=

1 +X

2X
∼ 1.18 (46)

The proton density found in this way, and the gas temperature measured
from the spectrum, provide crucial information on the gas environments of
radio jets and hence the external forces on the jet. The separation of X-
rays from the non-thermal processes associated with the radio source and the
thermal processes associated with the environment is therefore an important
part of establishing the physics of a jet. This is particularly true for low power
(FRI) jets, which are in direct contact with the external medium (Sec. 5.2),
but is also important for establishing the balance of static and ram-pressures
in powerful sources.

5 Simple radio-jet models

The FRI and FRII classifications, into which extragalactic radio sources were
separated by [41], remain in wide usage today. Although based on radio mor-
phology, [41] found a relatively sharp division in radio luminosity, with most
sources of total 178-MHz luminosity below 2×1025 W Hz−1 sr−1 being of FRI
classification, and the others of FRII. Some dependence of the location of the
FRI/FRII boundary on the optical magnitude of the host galaxy has also been
found [95], suggesting the effects of environment or the mass of the originating
black hole are important in determining the type of radio galaxy formed by
an active nucleus. However, the primary cause of the structural differences is
believed to be due to the speed of the primary jet fluid, with the beams pro-
ducing FRII sources being supersonic with respect to the ambient medium,
whereas FRI jets are seen as the result of turbulent transonic or subsonic
flows. The following sub-sections describe the observational consequences.

5.1 High-power FRII jets

The standard model for the expansion of a powerful radio source powered
by a jet which is supersonic with respect to the X-ray-emitting interstellar
medium (ISM) is illustrated in Fig. 6. The jet terminates at the beam head
(in a feature identified as the radio hotspot) where the jet fluid passes through
a strong shock to inflate a cocoon of radio-emitting plasma. The energy and
momentum fluxes in the flow are normally expected to be sufficient to drive
a bow shock into the ambient medium ahead of the jet termination shock. In
the rest frame of the bow shock, ambient gas is heated as it crosses the shock
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Fig. 6. In the standard model for powerful radio sources, a supersonic jet (dark
grey) terminates at the beam head, producing a radio hotspot. Provided the shocked
radio-emitting fluid forming the radio lobe (light grey) has enough internal energy
or momentum density to drive a leading bow shock, ambient X-ray-emitting gas will
be heated as it crosses the bow shock to fill the medium-grey region

Fig. 7. 8.4 GHz VLA A and B array radio image of an example high-power FRII
source, the radio galaxy 3C 220.1. The resolution is 0.3 ×0.2 arcsec, and the image is
from [145]. The angular length of the source is about 28 arcsec which, at the galaxy’s
redshift of z = 0.61, corresponds to 187 kpc (Ho = 70 km s−1 Mpc−1, Ωm = 0.3,
ΩΛ = 0.7)
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to fill a region surrounding the lobe of radio-emitting plasma. Observationally
on kpc scales we see the radio emission from well-collimated jets feeding edge-
brightened lobes. An example is shown in Fig. 7.

The sound speed in gas of temperature T is

cs =

√

γkT

µmH
(47)

where γ is the ratio of specific heats (γ = 5/3), k is the Boltzmann constant,
mH is the mass of the hydrogen atom, and µmH = 0.6mH is the mass per parti-
cle. Under these conditions, cs ≈ 516(kT/keV)1/2 km s−1 ≈ 0.54(kT/keV)1/2

kpc Myr−1.
The Mach number of the speed of advance, vadv, of the bow shock into the

ambient medium is M = vadv/cs, which in convenient units can be expressed
as

M ≈ 580(vadv/c)(kT/keV)−1/2 (48)

where c is the speed of light. The advance of the bow shock is likely to be slow
with respect to the bulk speed of the jet. However, the jets need not have bulk
relativistic motion (Sect. 3) for the general description of an FRII source to
hold.

The state of the X-ray gas close to a radio galaxy with a leading bow shock
should reflect the source dynamics, and in addition to the X-ray emission of
the ambient medium (Sect. 4), we may also expect to see hotter shocked gas
surrounding the radio lobe (Fig. 6). In a simple application of the Rankine-
Hugoniot conditions for a strong shock [123], the pressure, density, and tem-
perature, respectively, in the unshocked (subscript 1) and shocked (subscript
2) regions at the head of the bow shock are related by

P2/P1 = (5M2 − 1)/4 (49)

ρ2/ρ1 = 4M2/(M2 + 3) (50)

T2/T1 = (5M2 − 1)(M2 + 3)/16M2 (51)

for a monatomic gas.
Using the above equations, and converting density into an emissivity using

XSPEC, as discussed in Sect. 2.3, we find that in the energy band 0.8–2 keV,
where Chandra and XMM-Newton are most sensitive, for an M = 4 shock,
the X-ray emissivity contrast between shocked and unshocked gas is a factor
of 3 higher if the ambient gas is at a galaxy temperature of ∼ 0.3 keV than if
the external medium has a cluster temperature of ∼ 4 keV.

Complications apply in reality, and in practice these are difficult to treat
even with data from observatories as powerful as Chandra and XMM-Newton.
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Fig. 8. Radio images of an example low-power FRI source, the radio galaxy 3C 31.
The left image shows the large-scale structure. The map [80] has a resolution of
29 × 52 arcsec and is from a 608 MHz observations using the Westerbork Synthesis
Radio Telescope. The angular length is about 40 arcmin which, at the galaxy’s
redshift of z = 0.0169, corresponds to about 830 kpc (Ho = 70 km s−1 Mpc−1). The
right image shows an 8.4-GHz VLA map of the the inner ∼ 18 kpc where the jets
are relatively straight. The resolution is 0.25 arcsec, and the data are from [78]

Firstly, there is observational evidence that in supernova remnants the post-
shock electrons are cooler than the ions [66, 106]. Secondly, the simple
Rankine-Hugoniot equations do not take into account the fact that the bow
shock around a lobe is oblique away from its head, with a consequent change
in the jump conditions and the emissivity contrast [135]. However, in Sect. 6.5,
we describe how the above equations can also be applied to an overpressured
lobe in the inner structure of the low-power radio galaxy Cen A. The closer
such a structure is to a spherical expansion, the more normal the shock will
be everywhere and the better the applicability of the above equations.

5.2 Low-power FRI jets

The appearance of low-power jets, in FRI radio galaxies, is quite different from
that of high-power jets: compare Fig. 7 with Fig. 8. Whereas the high-power
jets in FRII radio sources are generally weak features within the well-defined,
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and much brighter radio lobes, low-power jets are usually of high contrast
against the inner radio structures. Low-power jets are usually brightest near
the active galactic nucleus, and then fade gradually in brightness at larger
distances from the core, although this pattern is often interrupted by patterns
of bright knots in all wavebands. FRI jets show a range of morphologies, from
almost straight and symmetrical two-sided jets to the bent “head-tail” sources
that are characteristic of low-power extended radio sources in clusters.

While it is believed that the same basic mechanism is responsible for the
generation of low-power and high-power jets, it appears that low-power jets
dissipate much of their energy without developing a well-defined beam head.
This is often taken to indicate that low-power jets are in good contact with the
external medium in which they are embedded, so that they share momentum
and energy with entrained material as they propagate. The strong velocity
shear between a fast-moving (originally relativistic, based on VLBI observa-
tions of the cores of low-power radio sources [50]) jet flow and the almost
stationary external medium must generate instabilities at the interface [10],
and drive the flow into a turbulent state. The physics of the resulting flow is far
from clear, although with simplifying assumptions [8] it has been shown that
subsonic and transonic turbulent jet flows can reproduce the general trend
of radio brightness and jet width for plausible confining atmospheres. More
recently, model fits [57] using (41) and (45) to X-ray measurements of the
thermal atmosphere of 3C 31, coupled with results from high-dynamic range
radio mapping [78] (Fig. 8), have led to a self-consistent model of the flow.

The kinematic model of 3C 31 [79] involves three distinct regions in the jet:
an inner ∼ 1 kpc long section of narrow jet where the flow is fast (relativistic)
and the opening angle of the jet is small, a flaring region of ∼ 2 kpc during
which the jet broadens rapidly and brightens in the radio, and an outer region
in which the jet expands steadily with a smaller opening angle than in the
flaring region. Here the jet decelerates steadily from a moderate Mach number
as it picks up mass from the external medium or from the mass lost by stars
embedded in the jet [73]. Buoyancy forces are important for much of the
outer flow, and the jet becomes sensitive to local changes in the density of the
intracluster medium, and hence is liable to deflect from straight-line motion.

While this model provides a good description of 3C 31, which displays a
smoothly-varying radio brightness profile and so is amenable to simple fitting
for flow speed, and is based simply on the basic conservation laws for mass,
momentum, and energy [9], it represents only the overall deceleration of the jet
from entrainment. This leaves unanswered important questions about the ori-
gins of the bright knots which appear in many jets, and which are interpreted
as the sites of strong shocks (which are relativistic, based on proper motion
studies), and about the detailed physics responsible for mass entrainment and
the deceleration of the jet.

While the knots in jets are sites where intense acceleration of particles to
highly relativistic energies can take place, it is clear from the diffuse X-ray and
other emission between the knots that there is continuing particle acceleration
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even in the inter-knot regions. The structures of the acceleration regions can
only be studied in detail in the closest radio galaxies, such as Cen A [58]
and M 87 [99]. A number of features of the knots have become apparent
through detailed multiwavelength studies, of which the most important are
the presence of high-speed motions (apparent speeds greater than the speed of
light having been noted in M 87), and the distinct locations for the acceleration
of particles radiating in different wavebands.

6 The interpretation of multiwavelength data in terms of

physical parameters

6.1 Minimum energy and magnetic field strength

The evidence for magnetic fields in the jets and lobes of active galaxies
(Sect. 6.6) confirms the synchrotron origin of the radio emission, which is
therefore an inseparable function of the magnetic-field strength and electron
spectrum. To progress further it is usual to assume that the source is radiating
such that its combined energy in particles and magnetic field is a minimum
[20]. In this situation the energy in the magnetic field is ∼ 3/4 of the energy
in the particles, and so this is similar to the condition in which the two are
equal and the source is in “equipartition”.

We can calculate the minimum-energy magnetic field for a power-law spec-
trum using the equations in Sect. 2.1, and for more complicated spectra results
can be obtained via numerical integration. The total energy in electrons

Ue = κmec
2

∫ γmax

γmin

γγ−pdγ = κmec
2

∫ γmax

γmin

γ−2αdγ (52)

From (7), the synchrotron luminosity per unit frequency is

Lν ∝ κν−αBα+1 (53)

and we can eliminate κ from (52) and (53) to give (for α 6= 0.5)

Ue ∝ Lνν
αB−(α+1)

(

γ1−2α
max − γ1−2α

min

)

(1 − 2α)
−1

(54)

If K is the ratio of energy in heavy non-radiating particles to that in
electrons, and η is the filling factor in the emission region of volume V , the
energy density in particles can be written as

upcl = C1B
−(α+1) (1 +K)

ηV
Lνν

α
(

γ1−2α
max − γ1−2α

min

)

(1 − 2α)−1 (55)

where the constant of proportionality, C1, is determined from synchrotron
theory and can be expressed explicitly using the equations in Sect. 2.1. The
energy density in the magnetic field can be written as
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uB = C2B
2 (56)

where the value of the constant C2 depends on the system of units. The value
of B which minimizes the sum of the two energy densities, Bme, is then given
by

Bme =

[

(α + 1)C1

2C2

(1 +K)

ηV
Lνν

α

(

γ1−2α
max − γ1−2α

min

)

(1 − 2α)

]1/(α+3)

(57)

Since luminosity density and flux density, Sν , are related by

Lν = (1 + z)α−1 Sν 4πD2
L (58)

where DL is the luminosity density, and the volume of a radio source can be
specified [90] in terms of its angular component sizes, θx, θy and path length
through the source, d, as

V = θxθy dD
2
L/(1 + z)4 (59)

we find

Bme =

[

(α+ 1)C1

2C2

(1 +K)

η θxθyd
4π Sν ν

α (1 + z)3+α

(

γ1−2α
max − γ1−2α

min

)

(1 − 2α)

]1/(α+3)

(60)
At minimum energy, the total energy density is ume = uB(α + 3)/(α + 1) =
upcl(α+3)/2. Any change in the ratio of uB to upcl increases the total energy
and pressure of the source. Thus if, as seen in the southwest radio lobe of
Cen A (Sect. 6.5), the minimum pressure is below that of the external medium,
expansion can immediately be inferred if lobes are to stay inflated for an
appreciable time. Using minimum energy, the magnetic fields in radio sources
are generally estimated at 1-10 nT (10-100 µGauss).

The dependence of Bme on the lower and upper cut-off energies of the
electron spectrum are weak, and since α is expected to be ∼ 0.6 from shock
acceleration [1], or larger where energy losses have steepened the spectrum,
it is the lower energy which has most effect. There is a stronger dependence
of Bme on (1 + K), the ratio of energy in all particles to that in radiating
electrons, and η. It is usual to adopt unity for both of these factors, which
gives a true minimum value for the energy and pressure [(γ − 1) times the
energy density, where in this context γ is the ratio of specific heats, which
is 4/3 for a relativistic gas]. Indirect arguments are then applied to estimate
if (1 + K) should be larger than unity or η less than unity for a particular
source.

In the case of SSC, Lν must be converted into a spectral number of photons
per unit volume, nν [i.e., n(νo) in the equations of Sect. 2.2]. For a uniform
spherical source, of radius r, the average value for nν is given by
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nν =
3 r Lν

4 c hν
(61)

It is instructive to consider the effects of relativistic beaming (Sect. 3). For
the case of a spherical blob, (58) is now the equation for Lνδ

(3+α), and the
total synchrotron luminosity in the source frame is reduced by a factor of δ4,
with uB and κ, the normalization of the electron spectrum, both reduced by
δ2. SSC in the source frame is reduced by a factor of δ6, and thus sources which
are more beamed have lower SSC to synchrotron flux ratios. [The factors of
δ2 become δ2(2+α)/(3+α) for the jet case where δ(2+α) should be used.]

The minimum-energy assumption can be tested by combining measure-
ments of synchrotron and inverse-Compton emission from the same electron
population. If the inverse Compton process is responsible for most of the
higher-energy radiation that is measured, and the properties of the photon
field are well known, the electron population is probed directly (Sect. 2.2). In
combination with measurements of radio synchrotron emission from the same
electrons, both the electron density and magnetic field strength can then be
estimated, and the minimum-energy assumption can be tested. Since the ap-
plication of this test requires that the volume and any bulk motion of the
emitting plasma be known, the best locations for testing equipartition are
the radio hotspots, which are relatively bright and compact, and are thought
to arise from sub-relativistic flows at jet termination (but see [46]), and old
radio lobes that should be in rough overall pressure balance with the external
medium. There is no reason to expect dynamical structures to be at minimum
energy.

Chandra has allowed such tests to be made on a significant number of
lobes and hotspots, with results generally finding magnetic field strengths
within a factor of a few of their minimum energy (equipartition) values for
(1 + K) = η = 1 (e.g., [19, 56]). A study of ∼ 40 hotspot X-ray detections
concludes that the most luminous hotspots tend to be in good agreement
with minimum-energy magnetic fields, whereas in less-luminous sources the
interpretation is complicated by an additional synchrotron component of X-
ray emission [59].

6.2 Jet composition

Much of the detailed physics of jets depends on what they contain. While it
is clear from their polarized radiation that jets contain fast charged particles
and magnetic fields, it is less clear whether these are primary energy-carrying
constituents of the jet or secondary. A number of different possibilities for the
energy carriers have been suggested. The most popular are that the jets are
primarily composed of electrons and positrons, or of electrons and protons,
although electromagnetic (Poynting flux) jets [108] and proton-dominated jets
[84, 104] have been discussed.
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Since jets are presumed to obtain much of their energy from the infall
of matter into a supermassive black hole, it is natural to suppose that elec-
tromagnetic radiation would carry much of the energy from the system on
the smallest scales, since a plausible mechanism for the extraction of energy
from the system is the twisting of magnetic field linked to the accretion disk.
[82] describe the processes that might launch such a jet, but fast interactions
with the plasma environment and efficient particle acceleration are expected
quickly to load the field with matter. In the resulting magnetohydrodynamic
flow much of the momentum would be carried by particles, although Poynting
flux may carry a significant fraction of the total energy [5].

An electron-positron pair plasma is a natural consequence of the high
energy density near the centres of active galaxies, and hence it might be
expected that electrons and positrons would be an important, and perhaps
dominant, component of the jet outflow. Acceleration of such a plasma by the
strong radiation field near the active nucleus is certainly possible [93, 109],
although radiation drag is an important limitation on the speeds to which
the flow can be accelerated if only electron-positron pairs are present [121].
The importance of electron-positron pairs can be established by assuming
that they are the major constituents of the flow, and then testing that the
kinetic energy that they carry down the jet is comparable with the radiated
power. While an electron-positron jet with arbitrary distribution of Lorentz
factors, N(γ), can satisfy this condition, an electron-proton jet should not
extend to Lorentz factors γmin < 100, to avoid a high order of inefficiency
and depolarization by Faraday rotation (Sect. 6.6). Another test, based on
the assumption that the hotspots at jet termination in the FRII radio galaxy
Cygnus A are reverse shocks in the jet fluid [72], suggests that the jet material
is an electron-positron fluid at that point.

Further information supporting the interpretation of jets as electron-
positron plasmas at their point of injection has been obtained by VLBI polar-
ization studies [134]. Here the detection of circular polarization, interpreted
as arising from mode conversion, strongly suggests that, on the pc scale, jets
have low γmin (< 20) and hence are electron-positron plasmas (Sec. 6.6), al-
though [110] find that other possibilities (notably that the jet is composed of
electrons and protons) are not ruled out since other mechanisms exist for the
generation of circular polarization.

There are also grounds for expecting high-power jets to contain a consid-
erable fraction of their mass in protons. Protons outnumber electrons by 100
to 1 in Galactic cosmic rays at energies at which they leak out of the galaxy
before significant energy loss [138]. Some jet acceleration mechanisms can ac-
celerate heavy components of the jets as much as, or more than, the lighter
components, and, even if the jet is initially light, interactions with the external
medium are expected to load it with protons (Sec. 5.2). However, there is little
direct evidence for the proton contents of jets. Polarization studies do not find
evidence of embedded thermal material, and protons are relatively inefficient
radiators so the synchrotron emission of relativistic protons is probably not



Multiwavelength evidence of the physical processes in radio jets 23

detectable (but see [2]). It does seem to be clear that jets are of low density
relative to the external medium, on the basis of numerical simulations, since
the structures of dense jets are unlike those observed, but there could still be
appreciable mass in the flow.

Support for the presence of protons is also found in models for the broad-
band spectral energy distributions of emission from some sub-parsec scale
quasar jets, where a significant proton contribution is required to boost the
kinetic power sufficiently to match the total radiated power [126]. Some ra-
dio lobes in low-power radio galaxies, if assumed to be radiating at minimum
energy (Sect. 6.1), would collapse because the X-ray-emitting medium has a
higher pressure [32]. Although there are several ways of boosting the internal
pressure in such a situation, magnetic dominance would make the sources un-
usual, electron dominance can be ruled out by constraints on inverse-Compton
scattering of the CMB, and non-relativistic protons are disfavoured on grounds
of Faraday rotation (Sect. 6.6), leaving a relativistic proton component most
likely. In contrast, there are other cases where the radio lobes would be over-
pressured with respect to the ambient X-ray-emitting medium if a relativistic
proton contribution were included [56]. Although this in itself is not a major
difficulty, since there are open issues concerning lobe expansion (Sect. 6.5),
these are lobes for which the magnetic field can be measured (Sect. 6.1) and
the sources are close to minimum energy when only the radiating electrons
are considered.

It has been known for some time that the minimum pressure in low-power
jets (calculated assuming an electron-positron plasma) is typically below that
of the external X-ray-emitting medium, e.g., [42, 71, 91, 140]. However, this
cannot be used simply to infer that the jets are launched as an electron-proton
plasma to give them the extra required pressure. Low-power jets are believed
to slow down to sub-relativistic speeds via entrainment of thermal material
(Sect. 5.2), and even the most detailed hydrodynamical modeling, such as that
which has been applied to 3C31 by [79], does not decide the issue of primary
jet content.

On balance it appears that the dominant energy-carrying constituents of
jets are electrons and positrons, but that relativistic protons may also be im-
portant, particularly in momentum transport. However, the situation remains
unclear, and there are degeneracies between the measurement of jet speed and
jet composition which render this conclusion tentative.

6.3 Jet speed

The resolved X-ray jets (excluding hotspots) that Chandra detects in powerful
radio sources are mostly in quasars, e.g., [28, 87, 112, 113, 117, 118, 119,
120], with the bright radio sources Pictor A and Cygnus A [136, 137] being
exceptions. The quasar X-ray jet emission is one-sided, on the same side as
the brighter radio jet, implying that relativistic beaming is important. Two-
sided X-ray emission, such as that in the quasar 3C 9 [40] most likely does
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not imply the presence of counter-jet emission, but rather the presence of
the more isotropic lobe, hotspot, or cluster-related emission expected at some
level in all sources and detected in many, e.g., [56, 145].

Currently there are several tens of quasar X-ray jet detections. They have
mostly been found through targeted programs to observe bright, prominent,
one-sided radio jets. In most cases there has been no pre-existing reported
optical jet detection, but there has been reasonable success from follow-up
work. The level of many such detections lies below an interpolation between
the radio and X-ray spectra, suggesting that synchrotron emission from a sin-
gle power-law distribution of electrons is not responsible for all the emission,
e.g., [113, 117], although it has been pointed out that since high-energy elec-
trons lose energy less efficiently via inverse Compton scattering in the Klein-
Nishina regime, the electron spectrum should harden at high energies and in
some cases may produce a synchrotron spectrum that can match observations
[35].

In order to avoid the total energy in particles and magnetic field being
orders of magnitude above its minimum value, as would arise from a simple
SSC explanation, the most widely favored model for the X-ray emission in
these cases is that the X-rays are produced by inverse Compton scattering
of CMB photons by the electrons in a fast jet (Sect. 3) that sees boosted
CMB radiation and emits beamed X-rays in the observer’s frame [27, 127].
The model can produce sufficient X-rays with the jet at minimum energy, but
only if the bulk motion is highly relativistic (bulk Lorentz factor, Γ ≈ 5− 20)
and the jet at a small angle to the line of sight. Although such a speed and
angle are supported on the small scale by VLBI measurements, at least for
the source which has guided this work, PKS 0637-752 [83, 117], the jet must
remain highly relativistic hundreds of kpc from the core (after projection
is taken into account) for the X-rays to be produced by this mechanism.
This conclusion, based on multiwavelength data, has been something of a
surprise, since earlier statistical studies of the structures of powerful radio
sources suggested that jet velocities average only about 0.7c at distances of
tens of kpc from the core [54, 133].

A difficulty with the interpretation of the X-rays from radio jets as due to
inverse-Compton scattering of CMB photons by a fast jet is that the observed
gradients in X-ray surface brightness at the edge of the knots are sharp [128].
Since the X-rays are generated from low-energy electrons (as the CMB photons
are boosted in the electron rest frame), the lifetimes of the electrons are long
and it is difficult to see how X-ray knots in high-power jets can have a steeper
gradient (as in PKS 0637-752, [117]) than radio knots, which are produced by
electrons of similar or higher energy. Although [128] suggest that the effects of
strong clumping in the jets may resolve this issue, a fast jet and the proposed
mechanism is then no longer required, since such clumping would increase the
SSC yield for a slow jet at minimum energy [117].
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6.4 Particle acceleration in jets

The electrons that emit synchrotron radiation in the radio, optical, and X-ray
wavebands are all ultrarelativistic (with Lorentz factors > 103). The existence
of large numbers of such relativistic electrons depends on their acceleration to
high energies locally within the jet, or hot-spot, since their lifetimes against
synchrotron losses (Sec. 2.1) are usually less than the minimum transport
times from the active nuclei. (This may not be the case if proton synchrotron
radiation is important [2].) Particle acceleration is generally discussed for the
cases of a particle interacting with a distributed population of plasma waves
or magnetohydrodynamic turbulence, or shock acceleration. Reviews of these
processes may be found in [13, 36, 37] and elsewhere.

Resolved X-ray jets in active galaxies with low radio power are detected
with Chandra in sources covering the whole range of orientation suggested
by unified schemes, suggesting that beaming is less important than in their
more powerful counterparts. The several tens of detected sources range from
beamed jets in BL Lac objects [12, 101] to two-sided jets in radio galaxies
[29, 58], with most X-ray jets corresponding to the brighter radio jet, e.g.,
[55, 57, 60, 61, 88, 144, 146]. Several of the observations have been targeted at
sources already known to have optical jets, from ground-based work or HST.
However, it’s easier [144] to detect X-ray jets in modest Chandra exposures
than to detect optical jets in HST snapshot surveys, because there is generally
better contrast with galaxy emission in the X-ray band than in the optical.

Inverse Compton models for any reasonable photon field suggest an un-
comfortably large departure from a minimum-energy magnetic field in most
low-power X-ray jets, e.g., [55]. Synchrotron emission from a single electron
population, usually with a broken power law, is the model of choice to fit the
radio, optical, and X-ray flux densities and the relatively steep X-ray spectra,
e.g., [16, 55]. X-ray synchrotron emission requires TeV-energy electrons which
lose energy so fast that they must be accelerated in situ.

The above arguments, applied to the bright northeast jet of the nearest
radio galaxy, Cen A, find in favor of X-ray synchrotron emission [74], and the
proximity of Cen A allows its acceleration sites to be probed in the great-
est possible detail. Unfortunately the dramatic dust lane spanning the galaxy
masks any optical jet emission. Proper motion of order 0.5c, observed both
in the diffuse emission and some knots of Cen A’s radio jet, is indicative of
bulk motion rather than pattern speed [58]. Since Cen A has a strong jet
to counter-jet asymmetry, (23) then suggests that the jet is at a small angle
to the line of sight. Since this contradicts the evidence based on parsec-scale
properties, and other considerations, that the jet is at about 50 degrees to the
line of sight, Cen A appears to be a case where intrinsic effects render (23)
inapplicable. Some of the bright X-ray knots have only weak radio emission
with no indication of proper motion, but with the radio emission brightening
down the jet in the direction away from the nucleus. While the radio asso-
ciation confirms that these X-ray knots are indeed jet related, the emission
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profiles are not what are expected from a simple toy model where the elec-
trons are accelerated and then advect down the jet, with the X-ray emitting
electrons losing energy faster than the radio-emitting electrons. Instead, it is
proposed [58] that there are obstacles in the jet (gas clouds or high-mass-loss
stars). Both radio and X-ray-emitting electrons are accelerated in the stand-
ing shock of this obstacle, and a wake downstream causes further acceleration
of the low-energy, radio-emitting, electrons. The resulting radio-X-ray offsets,
averaged over several knots, could give the radio-X-ray offsets seen in more
distant jets, e.g., [55].

The X-ray and radio emission in hot-spots are also offset in some cases
[56], presumably also because of the different locations of acceleration of the
particles at the different energies probed in these wavebands, if the emission
is all synchrotron. However, it is expected that much of the X-ray emission
should be of inverse-Compton origin, and then the offsets become harder to
understand, although [46] have described a model in which decelerations of
the jet plasma near a hot-spot can generate X-ray enhancements and small
offsets.

Optical polarization might help us to learn more about the acceleration
processes in low-power jets. In M 87 there is evidence for strong shock ac-
celeration at the base of bright emitting regions, in compressed transverse
magnetic fields [99]. A knot in the jet of M 87 has been observed to vary
in the X-ray and optical on the timescale of months, consistent with shock
acceleration, expansion, and energy losses [62, 100].

6.5 Pressure and confinement

It is interesting to compare the minimum pressure (Sect. 6.1) in radio lobes
with that of the external X-ray-emitting environment. Over-pressure in the
lobe would imply an expansion, which may be supersonic and should involve
significant heating of the external gas. Under-pressure suggests either that
the lobe is undergoing collapse (this should be rare given their prevalence) or
that there is an additional component of pressure that may be in the form of
relativistic protons. FRII sources are generally at high redshift where obser-
vations lack sufficient sensitivity and resolution to draw strong conclusions.
However, notwithstanding the fact that there is no reason to expect dynam-
ical structures to be at minimum energy, where tests are possible it tends
to be confirmed (Sect. 6.1), and it appears that with this assumption rough
pressure balance prevails, e.g., [7, 33, 56].

The situation in low-power radio galaxies is more complicated, because the
medium plays an important role in the deceleration of the jets, such that they
share momentum and energy with entrained material. However, these sources
have the advantage of being closer, and Sect. 5.2 describes how the pressure
profile predicted by the mass-entrainment model for deceleration of the jet in
3C 31 gives an excellent match to observations. The outer radio structures of
FRIs may sometimes be buoyant, e.g., [143], and in other cases show evidence
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of having done significant work on the gas in pushing it aside [15, 89], or
responsibility for lifting gas in hot bubbles, e.g., [31], expected to result in
eventual heating, e.g., [105]. Such heating would help to explain the weakness
or absence of lines from gas cooling below 1 keV in the densest central regions
of galaxy and cluster atmospheres, e.g., [102]. A statistical study shows that
atmospheres containing radio sources tend to be hotter than those without
[32].

One place where heating is definitely expected is from gas crossing the
supersonically advancing bow shock of an expanding lobe (Sec. 5.1). It is
possible to interpret X-ray cavities coincident with the inner parts of the radio
lobes of Cygnus A as due to an emissivity contrast between bow-shock heated
gas outside the lobes and the more easily detected ambient cluster medium
[24], although the parameters of the shock are not effectively constrained by
the data. More recent Chandra observations of Cygnus A find gas at the sides
of the lobes to have kT ∼ 6 keV, slightly hotter than the value of 5 keV
from ambient medium at the same cluster radius, possibly indicating cooling
after bow-shock heating, but again the data do not usefully constrain model
parameters [122].

The first and best example of a shell of heated gas which can reasonably
be attributed to supersonic expansion is not in an FRII radio source, but in
Cen A (Fig. 9). High-quality Chandra and XMM-Newton data [74] provide the
temperature and density constraints needed to test the model and measure
the supersonic advance speed of the bow shock responsible for the heating.
This source is an excellent example where much of the theory outlined earlier
in this chapter can be applied.

Cen A is our nearest radio galaxy, at a distance of 3.4 Mpc [67] so that
1 arcsec corresponds to ∼ 17 pc. The full extent of Cen A’s radio emission
covers several degrees on the sky [69]. Within this lies a sub-galaxy-sized
double-lobed inner structure [21] with a predominantly one-sided jet to the
northeast and a weak counter-jet to the southwest [58], embedded in a radio
lobe with pressure 1.4 × 10−12 Pa or more, greater than the pressure in the
ambient ISM (∼ 1.8×10−13 Pa; Table 1), and so which should be surrounded
by a shock. Around this southwest lobe there is a shell of X-ray emitting gas
which appears to have the geometry of the shocked ambient gas in Fig. 6
[75]. Although the capped lobe is around the weak counterjet, so it is not
evident that the lobe is being thrust forward supersonically with respect to
the external interstellar medium (ISM) by the momentum flux of an active
jet, the current high internal pressure in the radio lobe ensures its strong
expansion.

The temperature, proton density and pressure of the ambient ISM and
the X-ray shell, taken from [75] are given in Table 1. The ambient medium
is measured to have np ∼ 1.7 × 103 m−3 and kT = 0.29 keV, whereas the
shell is ten times hotter, at kT = 2.9 keV, and twelve times denser, with
np ∼ 2 × 104 m−3. From (51) and (50), we see that temperature and density
measurements for both the ambient medium and the shocked gas directly test
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shell

counter−jetnucleus

jet

Fig. 9. 0.5–5 keV X-ray image of Cen A from a 50 ks Chandra exposure using
the ACIS-S instrument. Pixel size is 1 arcsec. Data are exposure-corrected. Many
point sources associated with Cen A’s host galaxy NGC 5128 are seen, together
with a diffuse background of X-ray-emitting gas of kT ≈ 0.3 keV, and labelled X-
ray structures that are in whole or part related to radio structures (see the text and
[38, 58, 74, 75] for more details)

shock heating, since only two of the four parameters are required to measure
the Mach number, and the other two test the model.

The most straightforward application of the equations finds that the densi-
ties and temperatures are not self-consistent. The shell’s density and tempera-
ture are wrong for gas directly in contact with the bow shock. However, we can
find a Mach number consistent with shocking the gas to a temperature and
density such that the combined thermal and ram pressure is in pressure equi-
librium with the thermal pressure of the detected shell: M = 8.5, vadv ≈ 2400
km s−1. The post-shock temperature is kT2 ∼ 6.8 keV. The 6.8 keV gas flows
back from the shock, into the X-ray-detected shell at 2.9 keV. The character-
istics of this undetected hotter gas are given in Table 1. In this table we also
quote estimates of the relative X-ray emissivity (per unit volume) of gas in
the different structures over the 0.4-2 keV energy band, where the Chandra
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Table 1. Physical parameters of the gas in various regions of Cen A

Structure kT np Pressure 0.4–2 keV
(keV) (m−3) (Pa)† relative

emissivity, E

ISM (measured) 0.29 1700 1.8 × 10−13‡ 1
Behind bow shock (inferred) 6.8 6530 2.1 × 10−11 13
Shell (measured) 2.9 20000 2.1 × 10−11 127

† 1 Pascal = 10 dyn cm−2 ‡ incorrectly reported in Table 5 of [75]
ISM and Shell pressures are thermal only. Inferred pressure includes ram pressure
of ρ1v

2
adv(M

2 + 3)/4M2 .
The minimum-energy pressure in the radio lobe is ∼ 1.4 × 10−12 Pa.

response peaks and is relatively flat. The gas directly behind the bow shock
has a predicted emissivity that is an order of magnitude fainter than that in
the shell, accounting for its non-detection in our measurements.

The radiative timescale for material in the shell is ∼ 2 × 109 yrs (Fig. 5),
which is large compared with the lobe expansion time (< 2.4 × 106 years),
so the material in the shell behaves as an adiabatic gas [3]. The shell is over-
pressured compared with the minimum-energy pressure in the radio lobe (in
magnetic field and radiating electrons) by a factor of ∼ 10. If we assume min-
imum energy in the lobe, despite it being a dynamical structure, and that the
shell has reached equilibrium [but note that the sound-crossing time in the
shell (thickness ∼ 0.3 kpc, cs ∼ 9×10−7 kpc yr−1) is about 15 per cent of the
maximum time we estimate it has taken the lobe to reach its current size], the
shell’s overpressure relative to the radio lobe could be balanced by the ram
pressure from internal motions in the lobe for a moderate relativistic proton
loading. Finally, the shell’s kinetic energy is ∼ 5 times its thermal energy,
and exceeds the thermal energy of the ISM within 15 kpc of the centre of the
galaxy. As the shell dissipates, most of the kinetic energy should ultimately
be converted into heat and this will have a major effect on Cen A’s ISM,
providing distributed heating.

6.6 Magnetic field structures

Jets contain significant magnetic fields. The orientation of these fields is dis-
played by the linear polarization that they show in their radio synchrotron
emission, and for many years detailed maps of the radio polarizations of jets
have been used to infer the magnetic field geometries both on kpc scales, e.g.,
for NGC 6251 [98] and 3C 31 [43], and pc scales, e.g., for BL Lac objects [26].

The fractional linear polarization expected from an optically-thin synchro-
tron-emitting plasma is

πL =
α+ 1

α+ 5
3

(62)
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where α is the radio spectral index, and it is assumed that the frequency
of observation satisfies γ2

minνg ≪ ν ≪ γ2
maxνg, as for (7). The electric field

of the emitted radiation is perpendicular to the magnetic field within which
the emitting electron population lies, so that an observation of the plane of
polarization of the radio emission can be used to infer the geometry of the
magnetic field within the radio jet.

In mapping the direction of the projected magnetic field, account has to be
taken of the effect of Faraday rotation of the plane of polarization by mixed
thermal material and fields within and around the radio jets. For a foreground
plane slab of plasma, at a wavelength of λ, the Faraday rotation is an angle

θF = RMλ2 (63)

where the rotation measure along path length L is

RM =
1

c

∫ L

0

ne,th re νg cosψ dz (64)

where ne,th is the thermal electron density, re is the classical electron radius,
νg is the non-relativistic gyrofrequency, and ψ is the angle of the magnetic
field to the line of sight. In SI units,

RM = 8100

∫ L

0

ne,thB‖ dz rad m−2 (65)

for a magnetic field with line-of-sight component B‖ (in Tesla), where ne,th

is in m−3 and the thickness L is in pc. If the thermal material is mixed with
the radio jet’s plasma, an effect half this size is expected. If the magnetic field
and thermal material have a complicated structure, different dependencies of
θF on λ are possible. Faraday rotation is measured by multi-frequency radio
mapping, and uncertainties in the intrinsic plane of polarization of the radio
emission are minimized by working at high radio frequencies.

Since the presence of an appreciable density of thermal material around the
jets is revealed in X-rays (Sect. 4), a significant Faraday rotation is possible
if this medium contains a magnetic field, and some evidence for such Fara-
day rotation has been seen, e.g., in Hercules A [63], with the brighter, and
presumably Lorentz-boosted, jet often showing a lower Faraday rotation than
the opposite jet, as might be expected from simple geometrical considerations
[45, 77].

A more important consequence of the significant linear polarizations mea-
sured for radio jets, however, is that those jets cannot contain large amounts
of thermal material. If they did, then the change in θF between the front and
back sides of the jets would lead to linear polarizations far less than the ob-
served values, which are sometimes near the theoretical maximum given by
(62). The limits on Faraday depolarization thus lead us to conclude that the
X-rays from radio jets and lobes cannot come from thermal material mixed
with the jets.
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Polarization mapping also reveals that the magnetic fields in radio jets are
relatively well ordered. In many jets of both high and low radio power the
magnetic fields are longitudinal for the first few kpc of the length of the jet,
then, in lower-power jets, the magnetic field becomes perpendicular to the
jet axis at larger distances from the core, often after a significant change in
the jet’s width [17]. Variations on this pattern are seen where bright emission
knots exist in the jet. These knots appear to be associated with strong shocks,
which compress the magnetic field strongly into a transverse pattern at the
upstream (core-side) of the knot, after which the magnetic field pattern be-
comes complicated. A particularly good example [99] is M 87, where the use
of HST to map the optical polarization provides additional information, since
the lifetimes of the electrons emitting optical synchrotron emission are far
shorter than those of radio-emitting electrons. Significant differences between
the polarization structures seen in the optical and radio in M 87 suggest that
the sites of acceleration are different for different electron energies, with the
strongest shocks, that provide acceleration to the highest energies, appearing
in the most central parts of the jet.

In the central parts of radio sources, VLBI observations have been able
to detect both linear and circular polarization. A distinct difference is seen
in the polarizations of the pc-scale (VLBI) jets of BL Lac objects and radio
galaxies or quasars. Generally, the magnetic field orientation in the cores of the
highest-power sources is along the jet [26], but in lower-power sources, such as
BL Lac objects, regions of significant transverse field are seen, and change on
short timescales [44]. Again this is interpreted as the effect of shock structures
moving along the jets, compressing the magnetic field as they pass, although
helical patterns in the flow may affect the apparent field pattern, as may the
effects of relativistic aberration. The lower linear polarizations often seen in
pc-scale jets may be due to depolarization caused by the superposition of many
small-scale structures, with different field orientations, within the resolution
of the observations, or perhaps to significant structure in the nuclear gas near
the jet.

Circular polarization is generally undetectable in large-scale jets, but has
been mapped in pc-scale jets using VLBI [64, 65], where it is interpreted
as arising from mode conversion — the conversion of linear polarization to
circular polarization by Faraday rotation in the jet plasma, although this is
not certain [110]. If the X-ray emission from powerful jets on the large scale is
interpreted as inverse-Compton scattering of CMB photons in a fast jet, then
the population of relativistic electrons has to extend down to low energies
(Lorentz factors γmin = 10 − 20, [27, 127]). On the other hand, the detection
of significant polarization in VLBI jets implies that there should be few low-
energy protons and electrons (which would cause excessive internal Faraday
rotation), and hence that the jets should be composed of an electron-positron
plasma. However, the presence of an electron-positron plasma in the VLBI
jet does not necessarily imply its presence on the largest scales, where the jet
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may have become loaded with material gathered from the ambient medium
or the radio lobe.

6.7 Cores: the inner jets

Radio jets extend into the cores of active galaxies, where they are faster and
more compact. Special-relativistic effects then cause their brightness and vari-
ability time scales to be strong functions of jet orientation. As a result of
synchrotron self-absorption, it is important to use VLBI techniques at high
radio or mm frequencies to see close to the bases of jets.

The inner jets are difficult to distinguish at non-radio wavelengths because
of their closeness to the central engine, which is bright at infrared to X-ray
energies, and because of orientation-dependent absorption in the optical to
soft-X-ray bands from gas and dust structures. These gas and dust structures
are only sometimes detected, but their presence is often inferred so that models
which unify various classes of active galaxy might work, e.g., [6]. They affect
the central engine the most. Thus, the first problem in using multiwavelength
data to gain additional insight into radio jets on small scales is to separate out
the jet emission. For no waveband does telescope spatial resolution match that
of radio VLBI, and so only the tool of spectral separation is usually available.

In the most core-dominated radio sources, such as bright variable BL Lac
objects and quasars (often classed together as blazars), jet emission appears
dominant at all energies, sometimes up to TeV. The multi-wavelength spec-
tral energy distributions and variability time scales are used to probe the
beaming parameters and the physical properties of the emitting regions, e.g.,
[48, 76, 125]. Correlated flares are sometimes measured across wavebands,
giving support to the present of a dominant spatial region of emission, e.g.,
[124, 131], but otherwise uncertainties of size scales, geometries, and parame-
ters for the competing processes of energy loss and acceleration, often force the
adoption of oversimplified or poorly-constrained models for individual jets.

In the quasar population in general, there is good evidence that in the
X-ray an inner jet dominates the emission from core-dominated quasars, but
not lobe-dominated quasars, e.g., [18, 70, 141, 142, 148]. Radio galaxies are of
particular interest, because here emission from the central engine is weak. In
these sources a correlation of core soft-X-ray and radio emission, lost in lobe-
dominated quasars, re-appears [22, 39, 52, 139], suggesting that jet-related X-
ray emission is again dominant. In low-power radio galaxies, an optical core is
often seen with HST, and is interpreted as synchrotron emission from a similar
small-scale emitting region [23, 30, 53, 132]. However, at higher X-ray energies,
a number of radio galaxies show clear evidence of a hard, highly absorbed
continuum, sometimes accompanied by Fe-line emission, e.g., [51, 129]. Here
the decreasing jet output is leading to the central engine becoming increasingly
dominant. Both X-ray components can sometimes be distinguished in the
same spectrum, e.g., [33, 38].
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The richness of high-energy structure in larger-scale radio jets has been
revealed because it is well resolved with HST and Chandra. Our knowledge
of the inner jets is limited by the confusion of components that has now been
lifted for the jets discussed earlier in this chapter.

7 Conclusion

The new results on radio jets which have resulted from complementary X-ray
and optical observations have brought some surprises. Firstly, synchrotron X-
ray jets are common in low-power sources, which implies that the intrinsic
electron spectrum continues to TeV energies, and requires substantial in situ

particle acceleration. Secondly, the detection of many quasar X-ray jets, most
commonly interpreted as due to beamed CMB photons, would suggest that
highly relativistic bulk flows exist far from the cores, contradicting earlier
statistical studies of radio sources [54, 133]. Jet theory has had some pleas-
ing successes, such as the agreement of the X-ray pressure profile with the
prediction from a hydrodynamical model for 3C 31 [79].

There is still much observational work to be done. Firstly, there is consid-
erable bias in the jets which have been observed in the X-ray, and we need
observations of unbiased samples over broader luminosity and redshift ranges,
together with observations of the X-ray-emitting medium through which the
jets propagate. The measurements should elucidate the relative importance of
synchrotron emission, inverse Compton scattering, and relativistic beaming,
refine our knowledge of the source energetics, and improve constraints on jet
composition and speed. Secondly, we need more deep X-ray observations (and
refined theory) to understand jet-lobe/intercluster medium interactions. Fi-
nally, to study acceleration sites and processes, deeper and more detailed mul-
tiwavelength mapping, spectroscopy, and temporal monitoring is required. In
combination with multifrequency polarization measurements, such data could
map the spatial distributions and follow the acceleration of the electrons re-
sponsible for the radiation in the radio to X-ray bands.

It should, however, be acknowledged that much basic physics of jets is
still not well understood, e.g., the origin of the magnetic field, the method of
jet production and collimation, and the effects of turbulence. Much theoreti-
cal work in these areas is necessary to relate measurements to the processes
occurring in the fascinating jet flows that are observed.
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